

recording 1 - tracking, editing, home recording, collaborations
week one a

nussic 174 (an week one - overviopw

- structure: 174a, 174b, 174c
- 3 assignments (w1, w4, w7)
- n groups of 2-4 students
- in class critiques (w7, w10)
- nature of assignments
- grading - possible quiz?

ாnusi̊c 17

- basic terminology, simple acoustics and electronics
- recording work flow: tracking, editing, mixing, mastering
- studio components and configuration
- microphone types
- microphone technique
- using room acoustics for good sound
- recording multiple instruments

โாusi̊c 17

- protools licenses
- audio interfaces
- microphones
- equipment checkout
- classmates
- office hours \& TA

- books

ณーエsic 17

- correct me if i scramble your name.
- what music do you make?
- what instruments do you play (including software)?
- what are you listening to currently.

றusic 774a - week one a amplifude

- amplitude is measured in decibels - dB (from Alexander Graham Bell)
- about 6 dB for each doubling of amplitude $\mathrm{dB}=20 \times \log 10$ (amp). if $1 / 2$ volt is $0 \mathrm{~dB}, 1$ volt is $6 \mathrm{~dB}, 2$ volt is $12 \mathrm{~dB}, \ldots, 128$ volt is 48 dB . also, amp ratio $=10 \wedge(\mathrm{~dB} / 20)$
- dB is a relative scale measuring differences of amplitude. it can be fixed to a known zero point however as in:
- dBSPL (sound pressure level: $20 \mu \mathrm{P}$)
- dBu (volume unit: 0.7746 Volt or 1 mw into 600Ω),
- dBFS (full scale: largest digital number)
- dBV (1 Volt).
- hearing range
- 0 dBSPL : threshold of hearing (quietest audible sound)
- 25 dBSPL: quiet concert hall
- 40-60 dBSPL: normal conversation
- 80-90 dBSPL: busy traffic
- 120 dBSPL : possible permanent hearing loss (at ear)
- 130-140 dBSPL: threshold of pain (ear starts to feel pain)
- bits needed for threshold of hearing to threshold of pain? amp ratio $=10^{\wedge}(140 / 20)=10 \wedge 7=10,000,000$. 24 bits needed to represent this number.

nussic 17乌@ - Week one a frequency

- the frequency of a tone is the number of cycles per second - cps, cycles, kilocycles, hertz, kilohertz, megahertz, etc.
- the period of a tone is the number of seconds per cycle or spc. period $=1000 /$ frequency $=\mathrm{ms}$
- wavelength is the physical length of a cycle in space. wavelength $=$ period \times speed of sound $=$ speed of sound / frequency. $1125 \mathrm{fps} / 440 \mathrm{cps}=2.556 \mathrm{fpc}$. useful when measuring resonance or tuning feedback
- pitch is based on the perception of frequency. can be notated by letters ("C3" - middle C), MIDI note numbers (60 - middle C) or frequency (261.63 Hz - middle C)
- conversion from MIDI note to frequency in A440 tuning is $f=2^{\wedge}($ MIDInote/12) * 440/(2^(69/12))
- human hearing is typically given a range of 20 Hz to 20 kHz . to represent a single cycle we minimally need 2 samples. because of this a 40 kHz sample rate is minimally needed to represent a sound.
- however, a sample clock creates harmonics at multiples of the sample rate, and the sampled sound makes sidebands around the harmonics. to avoid these sidebands, we need a higher sample rate.

- suggested: read Bartlett chapters 2, 3 \& 4
- subscribe to TapeOP (free from tapeop.com)
- take the survey on canvas
- w2 tuesday: overview of recording process, home acoustics
- w2 thursday: forming recording groups
- w2 thursday: demonstration of setting up protools and recording gear...

